

Signal Hound Channelizer
Manual

Signal Hound Channelizer Manual

Published 2/2/2021

©2021, Signal Hound
1502 SE Commerce Ave, Suite 101

Battle Ground, WA
Phone 360-313-7997

1 Description

Signal Hound is releasing a real-time CPU-based RF baseband channelizer library for use with

Signal Hound spectrum analyzers and receivers. The channelizer is a 1-to-M I/Q channelizer with

arbitrary channel counts up to 2048 channels and configurable multi-threading. The channelizer

can sustain input rates in the 100’s of millions of input samples per second on standard desktop

processors, making it ideal for real time monitoring and intelligence applications.

Libraries are available for use on Windows and Linux.

2 Theory

The channelizer converts 1 input I/Q data stream with sample rate S into M I/Q data streams each

with sample rate S/M. The input channel is divided into M equidistant and spaced channels. For

example, a 50MS/s I/Q input could be channelized into 50 1MS/s output channels, or 2000 25kS/s

output channels.

Figure 1: Input channel containing a frequency ramp is channelized into M=4 output channels.

3 Implementation

The channelizer uses a traditional polyphase filter bank channelizer approach. Multi-threading is

accomplished by processing overlapping inputs in each thread in a standard thread pool

implementation.

The output of the FFT is neither bit reversed nor are the halves swapped, which means the

channels are provided linearly from negative to positive frequency. Rephrased, for a given

channel count of M, an M-point FFT is used, and the channels are ordered,

-M/2, -M/2+1, … -1, 0, 1, …, M/2 – 1, M/2.

4 Performance Notes

• The channelizer is optimized for Intel processors. The channelizer may not run as well

on AMD CPUs.

• The channelizer uses AVX intrinsic instructions. The CPU must support AVX1.

• Performance is affected linearly with filter size. Ideal filter sizes are small, 16 to 32 taps

per channel. A larger filter will have a steeper roll-off near the channel boundaries at the

expense of more processing.

• Performance is highly dependent on input size. The channelizer operates on fixed input

sizes which are selectable by the user. As the input size approaches the per-thread

cache size, performance decreases (see performance plot). Input sizes that are too

small will experience overhead costs associated with calling into the API too often. See

the usage section for more information on input size.

• Signal Hound has provided a benchmark function which can be used to benchmark

various configurations to find the best one for a given system.

5 Performance

Figure 2: Performance remains relatively constant for different channel counts and performance

increases close to linearly with the number of processing threads. Note that the channel counts

used are easily factorizable numbers, using non-factorizable channel counts such as large prime

numbers will affect performance negatively.

0

200

400

600

800

1000

1200

4 8 12 16 32 50 64 100 128 200 256 500 1000 2000

Th
ro

u
gh

p
u

t,
 M

S/
s

Number of output channels

Performance vs Channel Count, 500 kB input size, contiguous
output type, Intel i9-9900

1 Thread 2 Threads 4 Threads 8 Threads

Figure 3: Input size plays an important role in performance. Several factors affect the ideal input

size.

Figure 4: Performance is affected close to linear with filter size.

0

200

400

600

800

1000

1200

100 kB 200 kB 400 kB 800 kB 1 MB 2 MB 4 MB 8 MB 16 MB 32 MB

Th
ro

u
gh

p
u

t
(M

S/
s)

Block Size

Performance vs Input Size, M = 32, Filter Size = 16, Intel i9-9900

1 Thread 2 Threads 4 Threads 8 Threads

0

50

100

150

200

250

300

16 36 56 76 96 116

Th
ro

u
gh

p
u

t
(M

S/
s)

Filter Size per channel (taps)

Performance vs Filter Size, M = 32, 1MB input size, 1 thread,
Intel i9-9900

6 Usage

Examples are provided with the API. Each API function is documented in the shc_api.h header

file.

6.1 Data Type

I/Q samples into and out of the channelizer are provided as interleaved complex floating-point

samples. An array of I/Q values will have the form,

float myArray[N*2] = {Re1, Im1, Re2, Im2, …, ReN, ImN};

6.2 Creating the Channelizer

The user must first create a channelizer. To do this, users must select the following variables,

• M, Output channel count

• N, Number of output samples per channel to process per call to the API. The input size

per API call will then be M*N complex samples. The input size in bytes is calculated as

M*N*sizeof(complex float) or M*N*8.

• K, Filter size. Filter size must be a multiple of M. A filter size of 16*M is equivalent to

running a 16-tap FIR filter at the decimated rate.

• Filter taps, These are the FIR filter taps. The FIR filter should be a standard low pass

FIR filter with cutoff frequency below 0.5/M, where 0.5 represents the maximum low

pass cutoff frequency for a complex low pass filter. The FIR filter must be real-valued.

The API provides a function for generating these filter taps, or you can generate your

own.

• Number of threads, Specifies the number of threads to be used for processing. If 1

thread is selected, processing occurs in the calling thread. When more than 1 thread is

specified, a thread pool is created, and the calling thread waits until results are available.

The channelizer is created with the shcCreate() function. This function will return an integer

handle that is used to interface this channelizer.

6.3 Output Format

Once the channelizer is created, you must choose an output format with the

shcSetOutputFormat() function. The API provides two output formats, contiguous and non-

contiguous. Output format specifies the expected memory layout for the output channels.

Contiguous means the channels will be returned in one large array of length M*N complex

samples. Non-contiguous means the user will provide an array of pointers to M, N length complex

arrays, one for each channel.

Figure 5: Illustrating the difference in memory layout for the 2 output formats.

6.4 Single-Threaded Interface

When the channelizer is operating as single threaded, users will call the shcProcess() function.

This function will immediately process M*N input samples and return the results to the user.

6.5 Multi-Threaded Interface

When T threads are specified where T > 1, users will interface the API with the shcStart() and

shcFinish() function. shcStart() queues M*N input samples. Users can queue up to T number of

M*N input sample blocks, at which point shcFinish() must be called to retrieve the results from

one item in the queue. The queue is FIFO.

For maximum throughput, users will queue T input blocks, and maintain T items in the queue by

starting 1 queue item for every call to shcFinish().

See the multi-threaded examples for more information.

6.6 Notes

- The API is not thread safe. If accessing the API between multiple threads, use a mutex on

all function calls.

